
Remote control of AG hardware

Darran Edmundson and Paul Warren
ANU Supercomputer Facility
The Australian National University

darran.edmundson@anu.edu.au

Australian National University
• Founded in 1946 as a research-only university

• now 1000 academic staff, 8000 students

Why?

Motivation #1
• Using prosumer hardware leads to remote control wars

The
Ideal��

The Reality��

Motivation #2
• People least likely to frame the scene optimally are
those actually on camera.

• Open it up, let someone “out there” take control.

The Ideal�� The Reality��

Motivation #3
• Did I turn off the display wall?

• Check from home …

Lamp hours: 1500:32
suggest change bulb

Motivation #4
• Remote operation of multiple nodes (pipe dream?)

Motivation #5
• Commercial solutions are (up-front) expensive

AGDeviceControl (V.1)
• Extensible Python framework

• Uses Twisted, an asynchronous networking framework

• Each device is a separate Python module

• Communicate with server via a simple telnet protocol
(great for testing)

• Supports Canon VC-C4 camera, BenQ DX660
projector, x10 devices and several custom virtual
devices

PC3

PC1

aggregator

deviceserver

PC2

deviceserver

camera1

camera2

camera3

projector1

lights

• Physical devices connected to one or more machines,
each running a “DeviceServer”

• Devices can be real (cameras, projectors) or virtual
(software)

• Can connect directly, or use an “Aggregator” which
lumps DeviceServers

PC3

PC1

aggregatorr

deviceserver

PC2

deviceserver

camera1

camera2

camera3

projector1

lights

GUI Client1

GUI Client2

Telnet Connection

internet

Node Service

• Familiar examples
are vic and rat

• Exist in every venue

• No AGTk means of
communicating with
other Node Services

Shared App

• Tied to a specific venue

• Not automagically
started

• Can communicate with
other instances of the
Shared App

OR

V.2 Integration with AGTk

Painful but … it’s a node service,
dammit
• Start an Aggregator upon entering a venue

• Configuration info is:

• multicast host/port for this “stream”

• local DevServers to aggregate

• Populate GUI via Aggregator.getDeviceList()

Node Service Communication

• Why? So our Aggregator can discover other Aggregators

• Use heartbeat/beacon on the multicast channel allocated
for this PRODUCER

• If we hear the lonely far-off bling of another Aggregator,
we can add its devices to our GUI

Live Demo and/or Video

Future
• Grow software based on user feedback

• Add more devices

• Authentication (currently “security by multicast”)

For more info:

http://anusf.anu.edu.aul/ag

